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Geometric interpretation of chaos in two-dimensional Hamiltonian systems
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This paper exploits the fact that Hamiltonian flows associated with a time-independentH can be viewed as
geodesic flows in a curved manifold, so that the problem of stability and the onset of chaos hinge on properties
of the curvatureKab entering into the Jacobi equation. Attention focuses on ensembles of orbit segments
evolved in representative two-dimensional potentials, examining how such properties as orbit type, values of
short time Lyapunov exponentsx, complexities of Fourier spectra, and locations of initial conditions on a
surface of section correlate with the mean value and dispersion,^K̃& ands K̃, of the~suitably rescaled! trace of
Kab . Most analyses of chaos in this context have explored the effects of negative curvature, which implies a
divergence of nearby trajectories. The aim here is to exploit instead a point stressed recently by Pettini@Phys.
Rev. E47, 828 ~1993!#, namely, that geodesics can be chaotic even ifK is everywhere positive, chaos in this
case arising as a parametric instability triggered by regular variations inK along the orbit. For ensembles of
fixed energy, containing both regular and chaotic segments, simple patterns exist connectings K̃ for different
segments both with each other and with the short timex. Often, but not always, there is a nearly one-to-one
correlation between̂K̃& ands K̃, a plot of these two quantities approximating a simple curve. Overallx varies
smoothly along the curve, certain regions corresponding to regular and ‘‘confined’’ chaotic orbits wherex is
especially small. Chaotic segments located furthest from the regular regions tend systematically to have the
largestx’s. The values of̂ K̃& ands K̃ ~and in some casesx! for regular orbits also vary smoothly as a function
of the ‘‘distance’’ from the chaotic phase space regions, as probed, e.g., by the location of the initial condition
on a surface of section. Many of these observed properties can be understood qualitatively in terms of a
one-dimensional Mathieu equation, in which parametric instability is introduced in the simplest possible way.
@S1063-651X~97!06809-8#

PACS number~s!: 05.45.1b, 03.20.1i, 02.40.2k
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I. INTRODUCTION AND MOTIVATION

It is well known @1# that the flow associated with a time
independent HamiltonianH5 1

2 dabpapb1V(xa) can be re-
formulated as a geodesic flow in a curved, but conforma
flat, manifold. Specifically, let

ds25W~xa!dabdxadxa, ~1!

whereE is the conserved energy associated with the tim
independentH and the conformal factor

W~xa!5E2V~xa! ~2!

is equal numerically to the kinetic energy associated wit
trajectory at the pointxa. It then follows that, with the fur-
ther identification

ds5A2W dt, ~3!

the geodesic equation for motion in the metricgab5Wdab is
completely equivalent to the Hamilton equations

dxa

dt
5

]H

]pa
,

dpa

dt
52

]H

]xa . ~4!

*Electronic address: kandrup@astro.ufl.edu
561063-651X/97/56~3!/2722~11!/$10.00
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This implies that the confluence or divergence of nea
trajectoriesxa(s) and@x1j#a(s) is determined by the Jacob
equation, i.e., the equation of geodesic deviation, wh
takes the form

D2ja

Ds2 52Ra
bcdu

budjc[2Ka
cj

c, ~5!

whereRabcd is the Riemann tensor associated withgab and
D/Ds5ua¹a denotes a directional derivative alongua

5dxa/ds. Linear stability or lack thereof for the trajector
xa(s) is thus related toRabcd or, more precisely, to the cur
vature Ka

c . If, e.g., Rabcd is everywhere negative, so tha
Ka

c always has one or more negative eigenvalues, the tra
tory must be linearly unstable.

It would seem intuitive that, if the curvature ofgab is
everywhere negative, so that nearby trajectories always
to diverge, every geodesic will behave in a fashion tha
manifestly chaotic. If one assumes that the manifold is co
pact, so that trajectories are restricted to a region of fin
volume, this intuition can be evaluated to a theorem. F
example, geodesic flows on a compact manifold with co
stant negative curvature are necessarilyK flows, where ge-
neric ensembles of initial conditions evolve towards a mic
canonical distribution at a rate set by the magnitude of
curvature@2#. If the curvature is everywhere negative but n
constant, the flow is more complex, but one can still infer@3#
2722 © 1997 The American Physical Society
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56 2723GEOMETRIC INTERPRETATION OF CHAOS IN TWO- . . .
a chaotic evolution towards a microcanonical distribution
a rate bounded from below by the least negative value of
curvature.

When the curvature is not everywhere negative, much
is known. Nevertheless, the preceding has motivated the
pectation that, in many dynamical systems, chaos shoul
associated with~regions of! negative curvature. In particula
several authors~cf. @4,5#! have sought to use negative curv
ture to explain the fact that the gravitationalN-body problem
for a large number objects of comparable mass is chaoti
the sense that the evolution manifests an exponentially
sitive dependence on initial conditions.

However, as stressed recently by Pettini@6#, not all chaos
can be associated with negative curvature. In particular,
can have large measures of chaotic orbits even for syst
and energies whereKab is everywhere positive. In retrospec
this is easy to understand. Viewing the Jacobi equation
matrix equation, one can solve at any given point in spac
derive eigenvectors$X i% and eigenvalues$l i%, each pair
solving a linear equation of the form

D2X i

Ds2 52l iX i . ~6!

When the curvature is everywhere positive,l i>0, so that the
solutions are oscillatory rather than exponential. If thel i ’s
were constant along the trajectory, one could thus in
stable oscillations. In general, however, thel i ’s are not con-
stant, depending instead on the unperturbedxi(s) sinceRabcd
andua both change along the trajectory. It follows that, ev
assuming an everywhere positive curvature, Eq.~6! should
be interpreted as an oscillator equation

D2X i

Ds2 52V i
2~s!X i . ~7!

The obvious point is that solutions to Eq.~7! can manifest a
parametric instability.

Because the coordinates and velocity of a regular orbit
periodic, the frequencyV(s) must also be periodic, so tha
Eq. ~7! reduces to an oscillator equation with periodic mod
lation, e.g., a Hill equation. If the unperturbed geodesic is
be stable, so that it can exist as a regular orbit, it must be
solutions to this equation represent bounded oscillation
condition that implies nontrivial restrictions on the time d
pendence ofV. If these restrictions are not satisfied, the ge
desic must instead correspond to a chaotic orbit.

As observed by Cerruti-Sola and Pettini@7#, this intuition
is particularly simple to implement for two-dimensional sy
tems. In this case,Ka

b corresponds to a symmetric 232 ma-
trix, one eigenvalue of which is necessarily zero, correspo
ing to neutral stability with respect to infinitesima
translations along the orbit fromxa(s) to xa(s1ds). It fol-
lows that, in interpreting the behavior of a small perturb
tion, it suffices to restrict attention to perturbations in t
single direction orthogonal to the velocityua, so that one is
reduced to a single scalar equation.

More explicitly, by exploiting the fact that, in two dimen
sions, the Riemann tensor has only one independent non
component, sayRx

yxy, it is easily seen that
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Ka
b5S Rx

yxy~uy!2 2Rx
yxyu

xuy

2Rx
yxyu

xuy Rx
yxy~ux!2 D , ~8!

from which it follows that there are two eigenvalues, name
l50 and l5Rx

yxy@(ux)21(uy)2#5Kx
x1Ky

y . Transform-
ing from ua to the physical momentumpa and recalling that
W is equal numerically to the kinetic energy, the nonze
eigenvalue is

l5Rxyxy/W2, ~9!

where, explicitly,

Rxyxy5
1

2F]2V

2x2 1
]2V

]y2 G1
1

2WF S ]V

]x D 2

1S ]V

]y D 2G . ~10!

The component ofja orthogonal toua thus satisfies

d2j1

ds2 52Kj152
1

2
Rj1 , ~11!

whereK[Kx
x1Ky

y andR denotes the scalar curvature. A
ternatively, translating back into physical timet one finds
~cf. @7#!

d2j1

dt2
2

1

W

dW

dt

dj1

dt
522Rxyxyj152W2Kj1 . ~12!

Cerruti-Sola and Pettini@7# have studied representativ
orbits in one prototypical two-dimensional potential, name
the Hénon-Heiles potential@8#, demonstrating thereby tha
one can effect a translation between various orbital prop
ties as viewed in the ordinary Hamiltonian language and
viewed in this geometric language. However, it is also use
to study the statistical properties of ensembles of orbit s
ments since this facilitates a search for bulk regularities c
necting different properties of representative orbits. Thus
particular, such an investigation can provide important inf
mation about how quantities like short time Lyapunov exp
nentsx(t) @9# correlate with properties of the curvatureKab
as evaluated along some orbit. This is of interest for cha
orbits, where one knows that changing values of short ti
Lyapunov exponents can reflect phase space trans
through cantori@10# and other topological obstructions@11#
and/or the overall complexity of an orbit segment, as prob
by its Fourier spectrum@12#. This is also useful for regula
orbits where, for different initial conditions, the short tim
exponent x(t) can converge towards the asympto
Lyapunov exponentx`5x(t→`) at very different rates. In-
deed, for fixed timet the value ofx(t) for different regular
orbits with the same energyE can vary by more than an
order of magnitude.

Equations~11! and ~12! might suggest that the natura
quantity upon which to focus isK or W2K. However, when
realized as a function ofW and its derivatives, both thes
quantities involve~cf. Eq. @10#! division by positive powers
of W, which, for small values ofW, can lead to skewed
statistics for a finite sampling. For this reason, it was disc
ered that cleaner results were obtained by focusing on

K̃[W3K5WRxyxy. ~13!
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2724 56HENRY E. KANDRUP
Physically this combination arises if one introduces a n
time coordinatet satisfyingds5W3/2dt, so that

d2j1

dt2 2
3

2W

dW

dt

dj1

dt
52W3Kj1 . ~14!

The fact that the statistical properties ofK̃5W3K correlate
very strongly with properties of the unperturbed orbit su
gests that it is the coefficient ofj1 , rather than its time
derivative, that is responsible for much of the orbit’s o
served behavior.

The work described in this paper involved examining t
quantityK̃ as evaluated along different orbit segments, pr
ing in particular values of the mean^K̃& and the dispersion
s K̃. The resulting data were used to establish trends rel
to these quantities, including how different segments—b
regular and chaotic—fit into thêK̃&-s K̃ plane, and how the
values assumed by these quantities depend on other o
characteristics, e.g., on whether a regular orbit is a box
loop or whether a chaotic segment looks nearly regular
particularly complex. Especially striking were correlatio
between^K̃& or s K̃ and the values of short time Lyapuno
exponentsx(t) computed for the same segments. Given t
the value ofx is strongly correlated with the overall com
plexity of the orbit, as probed by its Fourier spectrum@12#,

such correlations also connect statistical properties ofK̃ with
the shape of the orbit, as viewed in configuration space.

As noted by Pettini~private communication!, the preceed-
ings justification for focusingK̃5W3K, rather thanW2K, is
potentially suspect since, at least in principle, any nontriv
time reparametrization can significantly alter the stabi
properties of geodesics. Fortunately, however, there is
other interpretation that may perhaps be more easily ju
fied: computing the average ofW2K along a geodesic can b
interpreted as involving a ratio of integra
*Ag dx dy W2K/*Ag dx dy, whereg denotes the determi
nant of the metricgi j and the integration extends over th
regions of the manifold along which the geodesic mov
However, it follows from Eq. ~2! that this reduces to
* dx dy W3K/* dx dy W, and, to the extent that* dx dy W
is approximately constant~as a consequence of virialization!,
one is effectively averaging the quantityW3K.

The results presented below derive from an analysis
orbit segments in two different representative tw
dimensional potentials. The first of these,

V~x,y!52~x21y2!1 1
4 ~x21y2!22 1

4 x2y2, ~15!

corresponds to the so-called dihedral potential of Armbru
et al. @13#, for one particular set of parameter values. T
second,

V~x,y!5 1
2 ~x21y2!1x2y2 1

3 y31 1
2 x41x2y21 1

2 y41x4y

1 2
3 x2y32 1

3 y51 1
5 x61x4y21 1

3 x2y41 11
45 y6, ~16!

represents the sixth order truncation of the Toda@14# lattice
potential ~recall that the He´non-Heiles potential can be de
rived as the third order truncation of the Toda potentia!.
These are very different qualitatively but, nevertheless, m
of the observed behavior is very similar for orbit segments
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both potentials. In the truncated Toda potential,K̃ is always
non-negative. However, for certain energies in the dihed
potential K̃ can be negative along parts of some orbits,
thoughK̃ tends to be positive most~.75–80 %! of the time.

Ensembles of orbit segments with fixed energyE were
generated by sampling theE5const hypersurface and the
evolving typically for a total timet5256, this in units where
a typical crossing time~i.e., the time required for an orbit to
cross from one side of the potential to the other! tcr;1 – 2.
This is a reasonable time interval to consider because cha
segments in these potentials tend to exhibit significant qu
tative changes on a time scale;(100– 200)tcr @15#. How-
ever, it was verified that similar results are obtained
somewhat longer and shorter total times. In most cases,
initial ensemble was generated by settingx50, uniformly
sampling the energetically allowed portions of they-py
plane, and then computing an initialpx.0 as a function of
x, y, py , andE. The orbits were integrated using a four
order Runge-Kutta scheme with a time stepdt51024.

Strictly speaking, when extracting statistical properties
K̃ it is most natural to analyze a time series that reco
relevant quantities at fixed intervals of geodesic times,
rather than at fixed intervals of ‘‘physical’’ timet, which is
achieved most easily by solving the geodesic equation a
ciated with Wdab rather than the original Hamilton equa
tions. However, it was found that the basic correlations
volving quantities likê K̃& ands K̃ were equally apparent fo
both sorts of time series. The discussion here focuses pr
rily on data recorded at fixed intervalsdt. This has the ad-
vantage that the conclusions derived here for the dihe
and truncated Toda potentials can be easily tested for o
potentials, without the inconvenience of explicitly reform
lating the evolution as a geodesic flow.

Section II describes various trends and correlations
served in the numerical experiments, demonstrating in p
ticular the existence of striking regularities connecting qu
tities like ^K̃&, s K̃, andx, many of which can be interprete
in terms of other physical properties of the orbits. Section
summarizes the principal conclusions and then shows t
not surprisingly, many of these can in fact be understood
terms of a simple one-dimensional Mathieu equation.

II. OBSERVED CORRELATIONS AMONG ŠK̃‹, s K̃, AND x

A. Correlations betweenŠK̃‹ and s K̃

In most, albeit not all, cases, i.e., for most energies in b
potentials, the values of the mean^K̃& and the dispersions K̃
of different orbit segments are strongly correlated. Rat
than filling a large portion of thêK̃&-s K̃ plane, the orbit
segments tend to fall, at least approximately, along a sin
curve. For the dihedral potential, this curve is typically qu
thin; for the truncated Toda potential, it can be significan
thicker. Moreover, this curve is typically characterized ov
all by a negative slope, so that orbits with larger^K̃& have
smallers K̃.

Figures 1 and 2 exhibit plots ofs K̃ as a function of̂ K̃&
for several different energies in, respectively, the dihed
and truncated Toda potentials. Figures 1~d!–1~h! and Figs.
2~c! and 2~d!, each characterized by a single curve, p
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haps with one or more intermittent gaps@as in Figs. 1~e! and
1~f!# or a slight ‘‘wiggle’’ @as in Fig. 1~h!# represent typical
behavior. The fact, manifest visually, that the values of^K̃&
ands K̃ are strongly correlated can be quantified by comp

ing the rank correlationR(^K̃&,2s K̃). For these typical
cases in the dihedral potential, the correlation between^K̃&
and 2s K̃ is usually very strong,R.0.98 or more. For the
truncated Toda potential, the correlation is often somew
weaker,R(^K̃&,2s K̃);0.9– 0.95, but still significant.

This sort of correlation between̂K̃& and s K̃, seemingly
suggestive of ordered behavior, is perhaps not surprising
regular orbits, where the motion is multiply periodic. Thu
e.g., it is easy to envision a sequence of regular box or l
orbits characterized by smoothly varying values of^K̃& or
s K̃. However, such correlations might seem less expec

FIG. 1. The mean̂ K̃& and dispersions K̃ for orbit ensembles
with eight different energiesE evolved in the dihedral potential fo
a total timet5256. ~a! E520.05. ~b! E50.05. ~c! E50.25. ~d!
E51.0. ~e! E52.0. ~f! E54.0. ~g! E58.0. ~h! E520.0.
t-

at

or
,
p

d

for chaotic orbits where the motion is aperiodic. It is ther
fore significant that, when viewed in such a^K̃&-s K̃ plot,
regular orbits need not stand out in any obvious way. C
sider, e.g., the orbit ensemble withE54.0 used to generate
Fig. 1~f!. Here one finds that there are three distinct types
regular orbits, a large number of orbits with 59,^K̃&,63
and 9,s K̃,26, a large number of orbits with 54,^K̃&
,57 and 33,s K̃,36, and a small number of orbits wit
43,^K̃&,45 and 49,s K̃,50. It is clear that all the points
below the gap in Fig. 1~f! are associated with regular orbit
and a careful examination of the data points allows one
distinguish minute differences between the locations of
regular and chaotic orbits in the intermediate regime,
,^K̃&,57 and 33,s K̃,36. However, it is evident that
overall, the regular and chaotic orbits coexist along a re
tively narrow curve@16#.

This can be associated tentatively with the fact that, e
though chaotic orbits are intrinsically aperiodic, finite ch
otic segments often manifest a fair amount of regular
Thus, e.g., as discussed more carefully below, one often
serves that the power spectra,ux(v)u and uy(v)u, for a cha-
otic segment typically appear visually to be constructed fr
‘‘pieces’’ appropriate for a small number of regular orbi
@12,17#. This interpretation is especially natural given th
recognition that the most striking exception to the simp
pattern described hitherto is associated with very low en
gies in the dihedral potential, where few, if any, regular o
bits exist.

Figure 1~a!, a seemingly structureless set of points co
pletely different from the lines observed in the remaini
panels of Figs. 1 and 2, derives from an ensemble of s
ments withE520.05, an energy where a sampling of nea
1000 different initial conditions yielded only chaotic orbit
At slightly higher energies, regular orbits begin to appe
and, unlike the chaotic orbits, they seem concentrated lar
along lines in thê K̃&-s K̃ plane. Thus, e.g., as illustrated i
Fig. 1~b!, for E510.05 there are four different types o
regular orbits, three of these associated with the three c

FIG. 2. The mean̂ K̃& and dispersions K̃ for orbit ensembles
with four different energiesE evolved in the truncated Toda poten
tial for a total timet5256.~a! E50.5. ~b! E53.0. ~c! E520.0.~d!
E530.0.
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2726 56HENRY E. KANDRUP
spicuous lines and the fourth associated with the largest
ues ofs K̃ above the central chaotic region. As the energy
raised to yet higher values, the regular families associa
with the two upper lines eventually disappear, so that, e.g
illustrated in Fig. 1~d! for E51.0, all the orbits fit approxi-
mately onto a single curve, with the chaotic orbits at highs K̃
and the regular orbits at lows K̃. When the energy is raise
to a higher value,E;3, other regular orbit families appea
leading eventually to the aforementioned behavior atE
54.0.

The observed behavior at low energies in the trunca
Toda potential is quite different, presumably reflecting t
fact that, in this case, at very low energies there is no glo
stochasticity. For energiesE,5.0 or so, all the orbits
present, both regular and chaotic, fit into two distinct lines
the ^K̃&-s K̃ plane. Consider, e.g., the energyE50.5 exhib-
ited in Fig. 1~a!. Here most of the upper line is occupied b
loop orbits, which manifest a discrete 2p/3 rotation symme-
try, whereas the lower line is occupied completely by b
and banana orbits that break this symmetry. There are on
very few chaotic orbits at this energy, and all of them fit
the highs K̃ end of the upper line. As the energy increas
the lower line eventually shrinks and merges into the up
line, so that, ultimately, different families of regular orbi
coexist with chaotic orbits along a single thickened curve

B. Correlations between curvature andx„t…

Ordinary Lyapunov exponentsx, which @18# probe the
average instability of some trajectory in an asymptotict→`
limit, manifest a fundamental distinction between regu
and chaotic orbits. For regular orbits all the Lyapunov exp
nents vanish identically, whereas chaotic orbits have at l
onex that is positive. Orbits in aD-dimensional system hav
2D distinct Lyapunov exponents, these corresponding to p
turbations in 2D independent phase space directions. Fo
time-independent Hamiltonian system, two of these ex
nents must vanish@reflecting neutral stability with respect t
perturbations that translate an orbit fromxa(t) to xa(t1dt)
and to perturbations orthogonal to the constant energy
face# and the remaining exponents must come in pairs,6x.
It follows that, for two-dimensional Hamiltonian system
the only fundamental distinction is between regular orb
for which all thex’s vanish, and chaotic orbits, which hav
one exponentx.0.

However, one can also introduce short time Lyapun
exponentsx(t), which provide information about the ave
age instability of orbit segments over a finite interval. Th
in particular, for any phase space perturbationdZ, one can
define@9#

x~ t ![ lim
t→`

lim
dZ~0!→0

1

t
lnF idZ~ t !i

idZ~0!i G , ~17!

where i•i represents a suitable norm. For a generic ini
perturbation, thisx(t) will converge towards the larges
Lyapunov exponent in the limitt→`, independent of the
detailed choice of norm. By contrast, at finite times the co
putedx(t) will depend on both the initial perturbation an
the choice of norm. Suppose, however, thati•i is taken as the
natural L2 phase space norm, i.e.,idZi25(dx)21(dy)2
l-
s
d

as

d
e
al

x
a

t
,
r

r
-
st

r-
a
-

r-

,

v

,

l

-

1(dpx)
21(dpy)

2. In this case, one knows that the comput
x(t) will be insensitive to the detailed choice of initial pe
turbation for timest@1/x(t).

It follows that, for chaotic segments integrated in the
hedral and truncated Toda potentials for times as long at
5256, the computedx(t) is nearly independent of the initia
dZ. However, as described below the values ofx(t) com-
puted for regular orbits can, and in certain cases do, exhib
significant dependence ondZ. For the experiments describe
in this paper,x(t) was computed@18# by introducing a small
perturbation of magnitudeidZi510210, evolving both un-
perturbed and perturbed initial conditions, and periodica
renormalizing the perturbation to an amplitudeidZi
510210 at intervalsDt510. Unless stated otherwise, the in
tial perturbation was taken asdZ5dx510210.

The objective here is to show that, for both regular a
chaotic orbit segments, strong correlations exist between
value of the short timex(t) and such properties of the cu
vature aŝ K̃& ands K̃. Because the quantities^K̃& ands K̃ are
themselves correlated, it would seem equally reasonabl
look for correlations betweenx(t) and either̂ K̃& or s K̃ ~or
any combination of these two quantities!. For specificity,
most of the discussion will focus on correlations betweens K̃

and x(t), although several figures exhibit examples of co
relations between̂ K̃& and x(t). Figures 3 and 4 exhibit
plots ofx as a function ofs K̃, generated respectively for th
dihedral and truncated Toda potentials for the same
sembles used to generate Figs. 1 and 2.

Consider first the case of orbit ensembles evolved in
dihedral potential. ForE520.05, where there are few if an
regular orbits, a plot ofx as a function ofs K̃ shows little
obvious structure: all that one sees is a seemingly rand
scattering of points at values ofx well separated fromx50.
However, asE increases, one begins to observe the existe
of regular regions, which correspond to ranges ofs K̃ where,
for some segments,x assumes values much smaller than t
values associated with chaotic segments. Thus, e.g., as
trated in Fig. 3~b!, for E50.05 one observes an extended lo
s K̃ band that corresponds to one regular line in Fig. 1~b!, a
collection of points nears K̃56.0 corresponding to the sec
ond line, another collection nears K̃57.4 corresponding to
the third line, and a small number of smallx points near
s K̃57.8 corresponding to the highs K̃ points in Fig. 1~b!.

For E.0.2 or so, a simpler pattern emerges that includ
only two types of regular orbits; they are concentrated
especially low and high values ofs K̃ ~or, equivalently, high
and low values of̂ K̃&). At somewhat higher energies, th
high s K̃ family disappears, only to be replaced by a ne
regular family concentrated at intermediate values ofs K̃. At
yet higher energies, one sees two large regular regions,
centrated at the largest and smallest values ofs K̃, along with
some intermediate regions with smallx’s that are associated
with nearly vertical lines in thes K̃-x plane. Viewed in a
surface of section, the lows K̃ regular region corresponds t
a large island of loop orbits; the highs K̃ region corresponds
to a large island of box orbits. The regular orbits associa
with the vertical lines correspond to smaller islands emb
ded in the stochastic sea. This structure appears to pers
very high energies.
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56 2727GEOMETRIC INTERPRETATION OF CHAOS IN TWO- . . .
For these relatively high energies,E.6.0 or so, a plot of
x as a function ofs K̃ or ^K̃& exhibits several striking regu
larities. One significant point, well illustrated forE510.0 in
Fig. 5, is that the transition from regularity to chaos observ
at low and high values ofs K̃ ~or high and low values of̂K̃&)
is relatively abrupt. Thus, e.g., the smalls K̃, large^K̃& loop
orbits can be viewed as a sequence beginning ats K̃'22 that
terminates at a value ofs K̃'112, whereas the larges K̃,
small ^K̃& boxes can be viewed as a sequence extend

upwards froms^K̃&'124 and terminating at a valuêK̃&
'135. The chaotic segments situated near the boundary
the outer regular regions tend typically to be ‘‘confined’’
‘‘sticky’’ chaotic orbits @19# trapped near the regular region
by cantori @10# that, oftentimes, only escape to trav
throughout the remainder of the stochastic sea on a t
scalet.256. It is also apparent from Fig. 5 that~even away
from the boundaries! chaotic segments with values ofs K̃
furthest from the high and lows K̃ regular regions tend sys

FIG. 3. The short time Lyapunov exponentx plotted as a func-
tion of s K̃ for the same orbit ensembles as in Fig. 1.
d

g

ith

e

tematically to have largerx’s than do chaotic segments wit
values ofs K̃ closer to the outer regular regions. The n
result is a curve that, viewed broadly, resembles a GreekL.

The overall shape of thes K̃-x curve in the regular region
depends on the choice of the initial seeddZ used in comput-
ing the short timex(t). If, as in Figs. 5~a! and 5~b!, one
computesx from a seeddZ5dx, it is apparent that the seg
ments with values ofs K̃ ~or ^K̃&) closest to the central cha
otic region, 112,s K̃,142 or so, tend overall to have large
values ofx than do orbits with values ofs K̃ further from this
chaotic region. However, ifx is generated instead from
seed with a significant component in one of the other th
phase space directions, this trend is significantly diminish
This is illustrated in Figs. 5~c! and 5~d!, which exhibitx’s
generated for the same initial conditions from a seeddZ
5dy. This difference presumably reflects the fact that, sin
the initial conditions were sampled from anx50 surface of
section, a perturbationdZ5dx tends to be more nearly
aligned along a direction of neutral stability, namely, tran
lation from x(t) to x(t1dt), than do perturbations with a
nonzerody.

At lower energies, where the highs K̃ region is absent or
not well developed, the right side of theL is missing. How-
ever, one still observes that chaotic segments withs K̃ closer
to the regular region tend to have smaller values ofx than do
chaotic segments far from the regular regions; and, at le
for a seeddZ'dx, that regular orbits closer to the chaot
region tend to have larger values ofx.

One obvious complication associated with the commonL
pattern, well illustrated in Fig. 5, is the presence of one
more nearly vertical lines in the chaotic region, extendi
from very low to relatively high values ofx. The lowest
values ofx seem too small to be associated with chao
segments, but the upper values seem too large to be as
ated with regular orbits. In fact, these lines contain two d
ferent classes of orbits, namely, regular orbits, for wh
x(t) eventually decays to zero, and confined chaotic orb
trapped temporarily near a small regular island, which ev
tually escape through one or more cantori to travel un

FIG. 4. The short time Lyapunov exponentx plotted as a func-
tion of s K̃ for the same orbit ensembles as in Fig. 2.
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2728 56HENRY E. KANDRUP
peded through the stochastic sea. Viewed in configura
space, the regular orbits corresponding to these lines co
spond to periodic orbits confined to an annulus or a ‘‘figu
eight-shaped’’ region. The confined chaotic orbits cor
spond to aperiodic orbits that, for a long time, are trapped
almost the same region~whence follows the fact that the
have nearly the samêK̃& ands K̃ as do the regular orbits!,
but eventually escape to probe the remaining chaotic ph
space regions.

Evidence for these assertions is provided in Fig. 6, wh
summarizes an investigation of the longer time evolution
the initial conditions that led to the near vertical line in Fi
5~b! at s K̃'139. A random sampling of 1261 initial cond
tions with E510.0 evolved for a total timeDt5256 led to
81 segments with 138,s K̃,140 andx(Dt),0.1. These 81
initial conditions were subsequently integrated for a sign
cantly longer time,t583256, withx(t) recorded at regula
intervals, and the resulting orbits partitioned into 8 segme
of lengthDt5256, for which valuess K̃ and^K̃& were com-
puted. The recorded values ofx(t) were then analyzed to
extract short time Lyapunov exponents for successive in
vals of lengthDt5256, the exponent for the segment exten
ing from tk5kDt to tk1Dt being defined via the obviou
relation ~cf. @12#!

x~Dtk!5
~ tk1Dt !x~ tk1Dt !2tkx~ tk!

Dt
. ~18!

The tiny dots in all four panels of Fig. 6 exhibit the valu
of x and s K̃ generated for the original ensemble of 12
orbits evolved for a timet5256. The diamonds in Fig. 6~a!
highlight the 81 segments concentrated initially along

FIG. 5. ~a! Short time Lyapunov exponentsx(t), generated with
an initial perturbationdx510210 and plotted as functions ofs K̃ for
an ensemble of orbit segments withE510.0 evolved in the dihedra
potential for a total timet5256. Only values ofx,0.16 are shown.
~b! The samex(t)’s plotted as a function of̂K̃&. ~c! The analog of
~a!, generated for the same ensemble, but now allowing for an
tial perturbationdy510210. ~d! The analog of~b!, generated for an
initial perturbationdy510210.
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line nears K̃5139. The diamonds in Fig. 6~b! show the val-
ues ofx ands K̃ derived from the same 81 initial condition
for the period 256,t,512. Figures 6~c! and 6~d! extend the
results to later intervals 512,t,768 and 768,t,1024. It is
clear that, as time elapses, the largerx diamonds escape from
the line and move to other portions of the chaotic regio
whereas the smallerx diamonds evolve closer tox50.

The other complication common to theL pattern is the
existence of smaller scale structures in the regular regio
As noted already, for short time exponents generated fro
seeddZ directed nearly in thex direction, many or most
regular segments fit along a curve withx decreasing as one
moves away from the central chaotic region to much lar
or smaller values ofs K̃. Alternatively, for more generic
choices ofdZ, a plot of x as a function ofs K̃ exhibits an
upper envelope that is more nearly independent ofs K̃. How-
ever, in each case this upper curve is not the whole stor

As illustrated in Figs. 5~c! and 5~d!, for generic values of
dZ the low s K̃ loop orbits exhibit two additional features
namely, ~1! small scale oscillations in thes K̃-x or ^K̃&-x
plane, and~2! an excess probability of finding segments wi
especially low values ofx closer to, rather than further from,
the central chaotic region. Alternatively, as illustrated
Figs. 5~a! and 5~b!, for dz oriented more nearly in thex
direction one can identify various ‘‘subfamilies’’ of regula
orbits which, for a fixed value ofs K̃, tend to have much
smaller values ofx than other regular orbits with~nearly! the
same value ofs K̃. Thus, e.g., if one focuses on a fixed in
terval of values ofs K̃ and compares regular orbits wit
larger values ofx that fall along the upper line with regula
orbits with smaller values ofx, he or she finds typically tha
there is a relatively clear cut difference between the two s
of orbits, as probed by the detailed shapes of their po
spectra or, in some cases, by the overall shape of the orb

i-

FIG. 6. The evolution of regular and confined chaotic orbits
E510.0 in the dihedral potential, withx plotted as a function of
s K̃. The dots represent analogs of Fig. 3, with a total integrat
time t5256. The diamonds represent the same initial conditio
analyzed over different time intervals.~a! 0,t,256. ~b! 256,t
,512. ~c! 512,t,768. ~d! 768,t,1024.
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56 2729GEOMETRIC INTERPRETATION OF CHAOS IN TWO- . . .
many cases, the regular orbits that have smaller valuesx
tend to be ‘‘simpler’’ or ‘‘more regular’’ in appearance. Th
is illustrated in Fig. 7, which exhibits two representati
regular orbits extracted from the interval 51.0,s K̃,58.0.
Figure 7~a! shows a typical low-x orbit, whereas Fig. 7~b!
shows a typical orbit lying along the upper curve. It is ob
ous that the higherx orbit is ~nearly! space filling within an
annulus, whereas the lower orbit exhibits more structure

The detailed patterns relatingx to s K̃ are different for
initial conditions evolved in the truncated Toda potential, b
the data still admit to a similar interpretation. At relative lo
energies,E;2 – 8, one sees patterns qualitatively similar
those observed forE.6 or so in the dihedral potential. Alter
natively, for somewhat higher energies,E.25 or so, one
sees instead a pattern reminiscent of those observed at
tively low energies in the dihedral potential where, in t
absence of a significant population of larges K̃ box orbits,
one observes simply that, for chaotic segments, largers K̃
correlates with largerx. Superficially, the behavior forE
520.0, illustrated in Fig. 4~c!, might seem quite differen
from what is observed in the dihedral potential since here
chaotic segments with the smallest values ofx are those
furthest from the regular regions. However, when placed
an appropriate context this behavior is not surprising. At
ergies slightly aboveE520.0, this low x chaotic region
merges into a relatively large regular island, which is w
established byE525.0. ForE530.0, one sees three larg
islands at lows K̃, the two corresponding to the lowest va
ues of s K̃ very similar qualitatively to the islands forE
510.0 in the dihedral potential associated with the two v
tical lines.

C. Curvature and complexity

The preceding shows that there is a strong correla
between the overall stability or instability of an orbit se
ment, as probed by the value of a short time Lyapunov
ponentx(t), and the values of̂K̃& ands K̃ associated with
that segment. However, earlier work@12# has shown that, for
chaotic segments, there also exists a strong, nearly lin
correlation betweenx(t) and thecomplexityof the segment,
as probed by the form of its Fourier spectrum. One th
anticipates that there should exist correlations between^K̃&
or s K̃ and the complexity of the segment.

As discussed more carefully in Ref.@12#, n(k), the com-
plexity of an orbit segment at thresholdk, can be defined in

FIG. 7. Two orbits withE510.0 evolved in the dihedral poten
tial for a time t5256. ~a! An orbit with ^K̃&5183.4,s K̃556.4,Q

5s K̃/^K̃&50.308, andx50.0051.~b! An orbit with ^K̃&5181.6,
s K̃562.7,Q50.345, andx50.0116.
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the following way. Given the values of the configuratio
space coordinates, sayx and y, at fixed time intervalsDt,
sampled, e.g.,;5–10 times per crossing time, compute t
power spectra,ux(v)u anduy(v)u in the usual way@20#. Next
determine the minimum number of frequencies,nx(k) and
ny(k), required respectively to capture a fixed fractionk of
the x andy powers. The total complexity is then defined

n~k!5nx~k!1ny~k!. ~19!

This notion of complexity is motivated by the idea th
‘‘comparatively regular’’ segments have most of their pow
concentrated at or near a few special frequencies, whe
‘‘wildly chaotic’’ segments have spectra with significant
broader band power. Experience with ensembles of or
evolved in several different potentials has indicated that v
uesk;0.9– 0.95 yield relative complexities in good agre
ment with subjective impressions based on visual inspec
of segments in thex-y plane. The results described in th
paper were derived from integrations where coordinates w
recorded at fixed intervalsDt50.125 for a total timet
5256, leading to 2048 points and hence a Fourier series w
2048 frequencies.

As stated already, for orbit segments in both the dihed
and truncated Toda potentials, as well as for other syst
@12#, there is a strong, nearly linear correlation betweenx(t)
and quantities such asn(0.9) or n(0.95). For ensembles
wherex andn(k) both assume a broad range of values,
rank correlation typically assumes a valueR„x,n(k)…
.0.85– 0.9. If, alternatively, most of the segments are c
centrated in the same part of thex-n(k) plane,R can be
smaller but still remains appreciable.

This correlation can be understood intuitively in terms
the fact that chaotic orbit segments often appear visually
be comprised of ‘‘pieces’’ of various regular orbits that ex
at the same energy@16#. Consider, e.g., orbits withE510.0
in the dihedral potential. Here one finds that chaotic s
ments with values ofs K̃ near those appropriate for the tw
large regular regions tend overall to look more regular, a
to have smaller complexities, than segments located at va
of s K̃ further from the regular regions. Moreover, chao
segments near the lows K̃ regular region tend to look
‘‘loopy’’ and to have power spectra dominated by featur
appropriate for the loop orbits that exist at smalls K̃; and
similarly, chaotic segments near the highs K̃ regular region
tend to look ‘‘boxy’’ and to have spectra similar to the hig
s K̃ box orbits.

The degree to which a quantity liken(0.9) correlates with
x, both in itself and in relation to other quantities like^K̃& or
s K̃, can be gauged from Fig. 8, which exhibits data gen
ated in the dihedral potential forE510.0 andE51.0. The
two left panels exhibit plots ofx as functions of^K̃&,
whereas the two right panels plotn(0.9) as a function̂K̃&. It
is clear that, at least in the chaotic regions, the plots ofx and
n(0.9) exhibit the same basic features, although the plot
n(0.9) seem more ‘‘blurred.’’

There is, however, a significant difference for the regu
orbits. Plots ofn(0.9) @or n(0.95)] as a function ofs K̃ or
^K̃& exhibit large systematic oscillations not manifested
the plots ofx, whereas the small scale structures presen
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2730 56HENRY E. KANDRUP
the plots of x ~cf. Fig. 5! are absent in plots ofn(0.9).
Consider, e.g.,E510.0. Here all the segments at large^K̃&
are regular loops, but the loops near^K̃&5175 are clearly
special in thatn(0.9) assumes values that are particula
small. This reflects the fact that, in this region, peaks in
spectraux(v)u and uy(v)u are much sharper than at som
what larger and smaller values of^K̃&.

This is a finite sampling effect, reflecting the fact that t
orbit’s segments were integrated for a relatively short ti
t5256. If the total timet is changed, but data are still re
corded and analyzed at 2048 equally spaced intervals,
finds that, as would be expected, the values of^K̃& ands K̃
computed for regular segments remain essentially
changed. By contrast, however, the details of the oscillati
can be altered significantly. Thus, e.g., forE51.0 the loca-
tion of the dip near̂ K̃&517.5 will move and other minima
can appear. Moreover, one observes that, ast increases, the
computed complexities decrease and the amplitudes of
oscillations damp.

One final correlation remains to be stated. To say tha
regular orbit is close to the chaotic region is a statem
aboutboth its location~say! in thes K̃-x planeand its actual
location in configuration space, as probed, e.g., by a sur
of section. For example, orbits in the large regular regio
with values of^K̃& and s K̃ further from the central chaotic
region tend systematically to lie closer to the center o
regular island than do regular segments with values of^K̃&
and s K̃ closer to the central chaotic region. Similarly, th
vertical lines associated with regular and confined cha
orbits are associated with smaller regular islands embed
in the stochastic sea.

These facts are illustrated in Fig. 9. Here the small d
represent successive sections generated from a single
confined’’ chaotic initial condition that systematically avoid

FIG. 8. ~a! The short time exponentx plotted as a function of
^K̃& for a collection of orbits withE510.0 evolved in the dihedra
potential for a total timet5256. ~b! The complexityn(0.9) plotted
as a function of̂ K̃& for the same set of segments.~c! The analog of
~a! for a collection of segments withE51.0. ~d! The analog of~b!
for the segments of~c!.
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the phase space regions near the two large regular isla
The remaining symbols represent different initial conditio
corresponding to regular and ‘‘confined’’ chaotic orbits ge
erated from a uniform sampling of they-py plane. The
smaller of the two large islands, located neary5py50 and
populated with stars, corresponds to box orbits. The larg
displaced fromy50, corresponds instead to loop orbit
Here the initial conditions were binned into three class
The diamonds represent segments withs K̃ assuming particu-
larly small values, whereas the squares represent value
s K̃ especially close to the chaotic region. The triangles c
respond to intermediate values. The remaining pluses
crosses represent initial conditions that led to the two ne
vertical lines exhibited in Fig. 5.

III. SUMMARY AND INTERPRETATION

Several general trends emerge from the experiments
scribed in the preceding section. Most striking and fund
mental, perhaps, is the fact that, for an ensemble of o
segments of fixed energyE, a plot of the dispersions K̃ as a
function of the mean̂ K̃& usually assumes a very simp
form. In general, regular and chaotic segments appear to
exist along a single curve in thêK̃&-s K̃ plane, although for
both potentials one sees more complicated structures at
low energies. The fact that chaotic segments fit along
single curve indicates that, even though they are aperio
they still exhibit significant statistical regularities.

Plots of the short time Lyapunov exponentx(t) as a func-
tion of ^K̃& or s K̃ also exhibit simple, distinctive patterns

FIG. 9. An x-px surface of section forE510.0 in the dihedral
potential. The dots derive from a single unconfined chaotic o
evolved for 2000 intersections. The remaining points repres
some of the initial conditions used to generate Figs. 5 and 6. D
monds represent loop orbits withs K̃,72.0. Triangles represen
loop orbits with 72.0,s K̃,90.0. Squares represent loop orbits wi
90.0,s K̃,110.0. Stars represent box orbits withs K̃.141.0.
Pluses represent points along the near-vertical line with 12
,s K̃,122 andx,0.08. Crosses represent points along the l
with 138.0,s K̃,140.0 andx,0.1.
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56 2731GEOMETRIC INTERPRETATION OF CHAOS IN TWO- . . .
For example, one find that, largely independent of the ini
perturbationdZ used in calculatingx, chaotic segments with
values of^K̃& ~or s K̃) far from the regions associated wit
regular orbits tend to have larger values ofx(t) than do
chaotic segments with values of^K̃& ~or s K̃) nearer the regu-
lar regions. For regular orbits, the computed values ofx(t),
and hence any correlations witĥK̃& or s K̃, depend more
sensitively on the initial perturbation. For most initial pertu
bations, it seems that, overall, the typicalx(t) is nearly in-
dependent of̂ K̃& and s K̃. However, for some classes o
perturbations one finds instead that segments with value
^K̃& ~or s K̃) further from the chaotic regions tend to ha
smaller values ofx than do regular segments with valu
closer to the chaotic region.

The correlations betweenx(t) and^K̃& ~or s K̃) observed
for chaotic orbits are very similar to the observed corre
tions between the complexityn(k) and ^K̃& ~or s K̃). This
reflects the fact that chaotic segments with values of^K̃& and
s K̃ closer to the regular regions tend to look more regu
and, consequently, to have less complex Fourier spectra
do orbits with values further from the regular region.

One other common feature, observed for both comple
ties and short time exponents, is the presence of one or m
nearly vertical lines in~say! the s K̃-x or s K̃-n(k) plane.
These are comprised of two distinct types of segme
namely, segments of regular orbits trapped forever in an
land of stability by invariant KAM tori and ‘‘confined’’ cha-
otic orbits, trapped temporarily by cantori in a similar co
figuration space region which, however, eventually diffu
through the cantori to probe the remaining portions of
chaotic sea.

Many of these qualitative features can be reproduced
much simpler context, where the linearized scalar Jac
equation~11! is replaced by a linear Matthieu equation of t
form @21#

d2j1

dt2
5~v1g sint !j1 , ~20!

wherev andg play the roles, respectively, of^K̃& ands K̃.
If one studies solutions to Eq.~20! as a function ofv and

g ~or, by analogy,̂ K̃& ands K̃) he or she finds that thev-g
pane is partitioned into a large number of disjoint regio
corresponding respectively to ‘‘regular’’ and ‘‘chaotic’’ or
bits. In the regular regions, it is apparent that, in thet→`
limit, the analog of the ordinary short time Lyapunov exp
nent,

x~ t !5
1

t
lnF idZ~ t !i

idZ~0!i G , ~21!

with idZi25uj1u21uj1u2, eventually converges toward
zero. Alternatively, in the chaotic regionsx(t) converges
towards a time-independent positive value. It follows tha
generic curve passing through thev-g ~or ^K̃&-s K̃) plane,
analogous to the curves exhibited in Figs. 1 and 2, will
clude both regular and chaotic regions with sharp transiti
between the two.
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For values ofv andg far from the chaotic portions of the
curve, one finds typically that, for reasonably larget, the
computed value ofx is relatively insensitive to the detaile
perturbation and to the exact values ofv andg. However, for
values ofv andg closer to the chaotic regions, more com
plicated patterns can arise. Viewed in an asymptotict→`
limit, the transition from regular to chaotic is abrupt. How
ever, the transition is smooth in the sense that, when ev
ated for some finite timet, the short timex(t) computed for
‘‘chaotic’’ values of v andg close to the regular regions i
typically smaller than thex(t) computed for values that ar
further from the regular region. This is consistent with t
fact, manifested in Figs. 3–5 that orbits with values of^K̃&
ands K̃ further from the regular regions tend to have larg
short time Lyapunov exponents. Given this observation, i
also easy to understand~cf. Fig. 6! why, for ‘‘sticky’’ chaotic
segments confined near regular regions by cantori, the c
puted x(t) tends to be smaller than for other chaotic se
ments that travel further from the regular regions.

A detailed discussion of the sense in which the onse
chaos can be understood in terms of a more general
equation has been presented by Cerruti-Sola and Pettin@7#
in the context of their analysis of individual orbits.

The work described in this paper has established the
istence of a strong correlation between such geometric p
erties of chaotic orbit segments as^K̃& ands K̃ and the short
time Lyapunov exponentx. However, one might expect tha
this local, short time analyses could also be extended to
tablish a global connection between moments ofK̃, as de-
fined along an infinite chaotic geodesic, and the ordin
Lyapunov exponentx`, as defined in at→` limit. Casetti
et al. @22# have shown that, at least for systems with a lar
numberN of degrees of freedom, such a connection do
indeed exist. Specifically, by assuming that the curvature
perienced by a chaotic orbit can be approximated as a
dom process, characterized by a mean^K& and a dispersion
sK , they obtained an analytic approximation to the larg
Lyapunov exponent which, in at least some cases, ag
extremely well with numerical computations.

It would seem unlikely that such a simple Gaussian
proximation, which these authors motivate in the largeN
limit, will work well for the very special caseN52. How-
ever, one might nevertheless hope that, in some fashion
value of the positive Lyapunov exponent for a tw
dimensional system can again be related to the moment
K or K̃ evaluated along the chaotic orbit. This possibility
currently under investigation.
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