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Geometric interpretation of chaos in two-dimensional Hamiltonian systems
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This paper exploits the fact that Hamiltonian flows associated with a time-indepddd=ant be viewed as
geodesic flows in a curved manifold, so that the problem of stability and the onset of chaos hinge on properties
of the curvatureK,, entering into the Jacobi equation. Attention focuses on ensembles of orbit segments
evolved in representative two-dimensional potentials, examining how such properties as orbit type, values of
short time Lyapunov exponenjg complexities of Fourier spectra, and locations of initial conditions on a
surface of section correlate with the mean value and disper(sl?&)nand ok, of the(suitably rescaledtrace of
Kap . Most analyses of chaos in this context have explored the effects of negative curvature, which implies a
divergence of nearby trajectories. The aim here is to exploit instead a point stressed recently bjyAPgini
Rev. E47, 828(1993], namely, that geodesics can be chaotic evef i§ everywhere positive, chaos in this
case arising as a parametric instability triggered by regular variatioKsatong the orbit. For ensembles of
fixed energy, containing both regular and chaotic segments, simple patterns exist conmgdtnglifferent
segments both with each other and with the short tyn®ften, but not always, there is a nearly one-to-one
correlation betwee(]R) andoy, a plot of these two quantities approximating a simple curve. Ovgradiries
smoothly along the curve, certain regions corresponding to regular and “confined” chaotic orbits ynisere
especially small. Chaotic segments located furthest from the regular regions tend systematically to have the
largesty’s. The values ofK) andoi (and in some caseg for regular orbits also vary smoothly as a function
of the “distance” from the chaotic phase space regions, as probed, e.g., by the location of the initial condition
on a surface of section. Many of these observed properties can be understood qualitatively in terms of a

one-dimensional Mathieu equation, in which parametric instability is introduced in the simplest possible way.
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I. INTRODUCTION AND MOTIVATION

It is well known[1] that the flow associated with a time-

independent Hamiltoniai = 2 52°p,p,+ V(x?) can be re-

This implies that the confluence or divergence of nearby
trajectories<?(s) and[x+ £]3(s) is determined by the Jacobi
equation, i.e., the equation of geodesic deviation, which
takes the form

formulated as a geodesic flow in a curved, but conformally

flat, manifold. Specifically, let

ds?=W(x?) 5,,dx2d X3, (1)

sza
B =~ Ribedt’uee=—K7£°, 5

whereE is the conserved energy associated with the time-

independent and the conformal factor

W(x®)=E—V(x?) (2

whereR ;4 IS the Riemann tensor associated wgth, and
D/Ds=u?V, denotes a directional derivative alongf
=dx?ds. Linear stability or lack thereof for the trajectory
x2(s) is thus related tdR,.4 Or, more precisely, to the cur-

is equal numerically to the kinetic energy associated with aature K%:. If, e.g., Rapeq is everywhere negative, so that

trajectory at the poink?. It then follows that, with the fur-
ther identification

ds=\2w dt, (3)

the geodesic equation for motion in the megig=W4,;, is
completely equivalent to the Hamilton equations

dx* oH dp, oH

—_ -——. 4
dt op,’ dt ax? @
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K2, always has one or more negative eigenvalues, the trajec-
tory must be linearly unstable.

It would seem intuitive that, if the curvature a@f,, is
everywhere negative, so that nearby trajectories always tend
to diverge, every geodesic will behave in a fashion that is
manifestly chaotic. If one assumes that the manifold is com-
pact, so that trajectories are restricted to a region of finite
volume, this intuition can be evaluated to a theorem. For
example, geodesic flows on a compact manifold with con-
stant negative curvature are necessdafilylows, where ge-
neric ensembles of initial conditions evolve towards a micro-
canonical distribution at a rate set by the magnitude of the
curvature[2]. If the curvature is everywhere negative but not
constant, the flow is more complex, but one can still ifgdr
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a chaotic evolution towards a microcanonical distribution at R w(UY)?  —RX ,u*uY
a rate bounded from below by the | i I h K&,= - 7
y east negative value of the b=| LR xR x2 |

curvature. ytu yxy(U)
. When the curvature is not everywhere negat|ye, much Iesﬁom which it follows that there are two eigenvalues, namely,
is known. Nevertheless, the preceding has motivated the eX-—0 and A =R~ (UN)2+ (W)2]=K* +KY,. Transform-

ectation that, in many dynamical systems, chaos should bg =Ryl (1) AARNEA 1570
P . ! hany dy cal Sy ' : |ﬁg from u? to the physical momentump, and recalling that
associated witliregions of negative curvature. In p_artlcular, W is equal numerically to the kinetic energy, the nonzero
several authorécf. [4,5]) have sought to use negative curva- eigenvalue is ’
ture to explain the fact that the gravitatiomddbody problem

®

for a large number objects of comparable mass is chaotic in A=Ro.. /W2 (9)

the sense that the evolution manifests an exponentially sen- W

sitive dependence on initial conditions. where, explicitly,

However, as stressed recently by Petf#ii not all chaos

can be associated with negative curvature. In particular, one 162V o?V] 1 [(aV\? [aV\?

can have large measures of chaotic orbits even for systems ~ Rax=3| 532 T 502| T 5 (&_x) +(W> - (10

and energies wheti€,, is everywhere positive. In retrospect,

this is easy to understand. Viewing the Jacobi equation as Bhe component o&? orthogonal tou? thus satisfies

matrix equation, one can solve at any given point in space to

derive eigenvectorgX;} and eigenvalueg\;}, each pair d?¢,

solving a linear equation of the form a2 -~ “Kéa=—-5Ré, (12)
D2X; whereK=K*,+KY, andR denotes the scalar curvature. Al-
Ds2 =—NiXi (6) ternatively, translating back into physical tinheone finds

(ct. [7])

When the curvature is everywhere positixez 0, so that the a2, 1 dwdé

solutions are oscillatory rather than exponential. If ihes _21_ —ZTer — 2Reynyé1= ~W2KE . (12
were constant along the trajectory, one could thus infer dt® W dt dt g

stable oscillations. In general, however, tés are not con-
stant, depending instead on the unpertundés) sinceR,pcq
andu? both change along the trajectory. It follows that, even
assuming an everywhere positive curvature, &j.should

be interpreted as an oscillator equation

Cerruti-Sola and Pettinj7] have studied representative
orbits in one prototypical two-dimensional potential, namely,
the Heon-Heiles potentia[8], demonstrating thereby that
one can effect a translation between various orbital proper-
ties as viewed in the ordinary Hamiltonian language and as
viewed in this geometric language. However, it is also useful

2
D7Xi =—02(s)X, 77 study the statistical properties of ensembles of orbit seg-
2 1 - . . " ..
Ds ments since this facilitates a search for bulk regularities con-

necting different properties of representative orbits. Thus, in

The obvious point is that solutions to EJ) can manifest a particular, such an investigation can provide important infor-
parametric instability. mation about how quantities like short time Lyapunov expo-

Because the coordinates and velocity of a regular orbit araentsy(t) [9] correlate with properties of the curvatukg,,
periodic, the frequenc$)(s) must also be periodic, so that as evaluated along some orbit. This is of interest for chaotic
Eqg. (7) reduces to an oscillator equation with periodic modu-orbits, where one knows that changing values of short time
lation, e.g., a Hill equation. If the unperturbed geodesic is td-yapunov exponents can reflect phase space transport
be stable, so that it can exist as a regular orbit, it must be thabrough cantor{10] and other topological obstruction$1]
solutions to this equation represent bounded oscillations, and/or the overall complexity of an orbit segment, as probed
condition that implies nontrivial restrictions on the time de- by its Fourier spectrumil2]. This is also useful for regular
pendence of). If these restrictions are not satisfied, the geo-orbits where, for different initial conditions, the short time
desic must instead correspond to a chaotic orbit. exponent x(t) can converge towards the asymptotic

As observed by Cerruti-Sola and Petfid, this intuition ~ Lyapunov exponeny..= x(t— ) at very different rates. In-
is particularly simple to implement for two-dimensional sys- deed, for fixed time the value ofy(t) for different regular
tems. In this case&K?, corresponds to a symmetric<2 ma-  orbits with the same energi can vary by more than an
trix, one eigenvalue of which is necessarily zero, corresponderder of magnitude.
ing to neutral stability with respect to infinitesimal  Equations(1l) and (12) might suggest that the natural
translations along the orbit frox?(s) to x?(s+ 8s). It fol- quantity upon which to focus i or W?K. However, when
lows that, in interpreting the behavior of a small perturba-realized as a function diV and its derivatives, both these
tion, it suffices to restrict attention to perturbations in thequantities involve(cf. Eq.[10]) division by positive powers
single direction orthogonal to the velocity?, so that one is of W, which, for small values ofV, can lead to skewed
reduced to a single scalar equation. statistics for a finite sampling. For this reason, it was discov-

More explicitly, by exploiting the fact that, in two dimen- ered that cleaner results were obtained by focusing on
sions, the Riemann tensor has only one independent nonzero

component, saR”,,,, it is easily seen that REW3K=WR><yXy. (13
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Physically this combination arises if one introduces a newpoth potentials. In the truncated Toda potenui'éli,s always

time coordinater satisfyingds=W?*2dr, so that non-negative. However, for certain energies in the dihedral
26 3 dWde, potentialK can be negative along parts of some orbits, al-
e a— —— == —WAK &, (14)  thoughK tends to be positive most-75-809% of the time.
dr® 2w dr dr Ensembles of orbit segments with fixed enei§ywere

. =g generated by sampling tHe=const hypersurface and then
The fact that the statistical properties KWK correlate evolving typically for a total time = 256, this in units where

very strongly with properties of the unperturbed orbit sug-5 ypical crossing timéi.e., the time required for an orbit to
gests that it is the coefficient of;, rather than its time .rqs5 from one side of the potential to the otheg~1—2.
derivative, that is responsible for much of the orbit's ob-1jg is 3 reasonable time interval to consider because chaotic
served behavior. _ » segments in these potentials tend to exhibit significant quali-
Thg work described in this p'aper |nvol\{ed examining theytive changes on a time scate(100—200),, [15]. How-
quantityK as evaluated along different orbit segments, probever, it was verified that similar results are obtained for
ing in particular values of the mediK) and the dispersion somewhat longer and shorter total times. In most cases, the
ok. The resulting data were used to establish trends relategitial ensemble was generated by settixg 0, uniformly
to these quantities, including how different segments—botisampling the energetically allowed portions of tiep,
regular and chaotic—fit into th¢K)- ok plane, and how the plane, and then computing an initip>0 as a function of
values assumed by these quantities depend on other orbite] y, p,, andE. The orbits were integrated using a fourth
characteristics, e.g., on whether a regular orbit is a box or arder Runge-Kutta scheme with a time stép=104.
loop or whether a chaotic segment looks nearly regular or  Strictly speaking, when extracting statistical properties of
particularly complex. Especially striking were correlationsK it is most natural to analyze a time series that records
between(K) or o and the values of short time Lyapunov relevant quantities at fixed intervals of geodesic tisje
exponentsy(t) computed for the same segments. Given thatather than at fixed intervals of “physical” timg which is
the value ofy is strongly correlated with the overall com- achieved most easily by solving the geodesic equation asso-
plexity of the orbit, as probed by its Fourier spectr{ib2], ciated with W§,, rather than the original Hamilton equa-

such correlations also connect statistical propertie$ ofith ~ tions. However, it was found that the basic correlations in-
the shape of the orbit, as viewed in configuration space. Vvolving quantities likglK) ando were equally apparent for

As noted by Pettinjprivate communication the preceed- both sorts of time series. The discussion here focuses prima-
ings justification for focusind = WK, rather tharw?2K, is  fily on data recorded at fixed interva. This has the ad-
potentially suspect since, at least in principle, any nontriviavantage that the conclusions derived here for the dihedral
time reparametrization can significantly alter the stability@nd truncated Toda potentials can be easily tested for other
properties of geodesics. Fortunately, however, there is arfotentials, without the inconvenience of explicitly reformu-
other interpretation that may perhaps be more easily justilating the evolution as a geodesic flow. _
fied: computing the average W2K along a geodesic can be ~ Section Il describes various trends and correlations ob-
interpreted as involving a ratio of integrals ;erved in thg numerical gxpenments,_(_jemonstran_ng in par-
[\gdx dy WK/ [ /g dx dy, whereg denotes the determi- ticular the existence of striking regularities connecting quan-
nant of the metriag;; and the integration extends over the tities like (K), o%, andy, many of which can be interpreted
regions of the manifold along which the geodesic movesin terms of other physical properties of the orbits. Section Il
However, it follows from Eq.(2) that this reduces to summarizes the principal conclusions and then shows that,
fdx dy WK/ dx dy W and, to the extent thatdxdyw  not surprisingly, many of these can in fact be understood in
is approximately constartas a consequence of virializatipn terms of a simple one-dimensional Mathieu equation.
one is effectively averaging the quantity’K.

The results presented below derive from an analysis of ~
orbit segments in two different representative two- - OBSERVED CORRELATIONS AMONG  (K), o, AND x

dimensional potentials. The first of these, A. Correlations between(K) and o

V(X,Y) = — (x2+y?) + F(x2+y?)2— 1x?y?, (15) In most, albeit not all, cases, i.e., for most energies in both
potentials, the values of the meéd) and the dispersiony
corresponds to the so-called dihedral potential of Armbrusteof different orbit segments are strongly correlated. Rather
et al. [13], for one particular set of parameter values. Thethan filling a large portion of théK)-ox plane, the orbit

second, segments tend to fall, at least approximately, along a single
Lo o 13142214 a curve. For the dihedral potential, this curve is typically quite
V(X,y)=3(X"+y9) + Xy —3y°+ X"+ Xy + 3y "+ X7y thin; for the truncated Toda potential, it can be significantly

thicker. Moreover, this curve is typically characterized over-
all by a negative slope, so that orbits with lardét) have
represents the sixth order truncation of the TPt lattice ~ smalleroy. _
potential (recall that the Heon-Heiles potential can be de- Figures 1 and 2 exhibit plots afg as a function ofK)
rived as the third order truncation of the Toda poteitial for several different energies in, respectively, the dihedral
These are very different qualitatively but, nevertheless, mucland truncated Toda potentials. Figurgs)):1(h) and Figs.

of the observed behavior is very similar for orbit segments in2(c) and 2d), each characterized by a single curve, per-

+2x%y3—LyS+ LxB 4 xty2+ x4+ 1y, (16)
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FIG. 2. The mear{ﬁ) and dispersiorv for orbit ensembles
30 ‘ 60 ' with four different energieg evolved in the truncated Toda poten-

iy, \\\ tial for a total timet=256.(a) E=0.5.(b) E=3.0.(c) E=20.0.(d)
- E=230.0.

for chaotic orbits where the motion is aperiodic. It is there-

Ty
5
Ty
o
o

0) \\ 0 \ fore significant that, when viewed in such(K)-o% plot,
regular orbits need not stand out in any obvious way. Con-
0 , 0 sider, e.g., the orbit ensemble wilh=4.0 used to generate
22 27 32 42 53 64 Fig. 1(f). Here one finds that there are three distinct types of
<K> <K> regular orbits, a large number of orbits with $8K)<63
120 * 400 and 9<og<26, a large number of orbits with 54K)

N~ \\ <57 and 3% 0g<36, and a small number of orbits with
43<(K)<45 and 49<og<50. It is clear that all the points
& 60l IoE 00t ] below the gap in Fig. (f) are associated with regular orbits,
and a careful examination of the data points allows one to
(9) (h) distinguish minute differences between the locations of the
' regular and chaotic orbits in the intermediate regime, 54
90 70 50 200 200 =00 <(K)<57 and 33X 0g<36. However, it is evident that,
<K> K> overall, the regular and chaotic orbits coexist along a rela-
tively narrow curve/16].

This can be associated tentatively with the fact that, even
though chaotic orbits are intrinsically aperiodic, finite cha-
otic segments often manifest a fair amount of regularity.
Thus, e.g., as discussed more carefully below, one often ob-
serves that the power spectfa(w)| and|y(w)|, for a cha-
otic segment typically appear visually to be constructed from
haps with one or more intermittent gaj@s in Figs. 1le) and  “pieces” appropriate for a small number of regular orbits
1(f)] or a slight “wiggle” [as in Fig. 1h)] represent typical [12,17_|._ _This interpretation is_ e_specially r_latural given the
behavior. The fact, manifest visually, that the valuegiof ~ recognition that the most striking exception to the simple
and o, are strongly correlated can be quantified by comput Pattern desc_rlbed hitherto is associated Wlth very low ener-
ing the rank correlatiorR((K),— o7). For these typical gies in the dihedral potential, where few, if any, regular or

: _ _ _ bits exist.
cases in the dihedral potential, the correlation betwgéen Figure 1a), a seemingly structureless set of points com-
and — o is usually very strongR>0.98 or more. For the

: S pletely different from the lines observed in the remaining
truncated Toda potential, the correlation is often somewh%ane|s of Figs. 1 and 2, derives from an ensemble of seg-
weaker,R((K),— o) ~0.9-0.95, but still significant. ments withE= —0.05, an energy where a sampling of nearly
This sort of correlation betweefK) and oz, seemingly 1000 different initial conditions yielded only chaotic orbits.
suggestive of ordered behavior, is perhaps not surprising foit slightly higher energies, regular orbits begin to appear
regular orbits, where the motion is multiply periodic. Thus, and, unlike the chaotic orbits, they seem concentrated largely
e.g., it is easy to envision a sequence of regular box or looplong lines in thgK)-o plane. Thus, e.g., as illustrated in
orbits characterized by smoothly varying values(kf) or  Fig. 1(b), for E=+0.05 there are four different types of
ok. However, such correlations might seem less expectegegular orbits, three of these associated with the three con-

FIG. 1. The mear{K) and dispersiorv for orbit ensembles
with eight different energiek evolved in the dihedral potential for
a total timet=256. (a) E=—0.05. (b) E=0.05.(c) E=0.25. (d)
E=1.0.(e) E=2.0.(f) E=4.0.(g) E=8.0.(h) E=20.0.
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spicuous lines and the fourth associated with the largest vaH(épx)er(épy)z. In this case, one knows that the computed
ues ofok above the central chaotic region. As the energy isy(t) will be insensitive to the detailed choice of initial per-
raised to yet higher values, the regular families associatedlirbation for timest> 1/x(t).

with the two upper lines eventually disappear, so that, e.g., as |t follows that, for chaotic segments integrated in the di-
illustrated in Fig. 1d) for E=1.0, all the orbits fit approxi- hedral and truncated Toda potentials for times as lony as
mately onto a single curve, with the chaotic orbits at high =256, the computeg(t) is nearly independent of the initial
and the regular orbits at lowy. When the energy is raised 5z However, as described below the valuesyt) com-

to a higher valueE~3, other regular orbit families appear, ted for regular orbits can, and in certain cases do, exhibit a
leading eventually to the aforementioned behaviorEat  gjgnificant dependence afz. For the experiments described

=4.0. C : -
. . in this papery(t) was computedl18] by introducing a small
The observed behavior at low energies in the trEJncateé]erturbation of magnitud§sz||=10"1° evolving both un-
Toda potential is quite different, presumably reflecting the

fact that, in this case, at very low energies there is no globa‘ferturbeq _and perturbed initigl conditions, and.periodically
stochasticity. For energie€<5.0 or so, all the orbits reno[rlnoallz_lng the perturbation to an ampll_tudk-ﬁZH_ ,
present, both regular and chaotic, fit into two distinct lines in”_ 10" "at intervalsAt=10. Unless stated otherwise, the ini-

~ . : tial perturbation was taken a8z = 6x=101°.
the (K)-o% plane. Consider, e.g., the enerBy= 0.5 exhib- S X
ited in Fig. 1a). Here most of the upper line is occupied by The objective here is to show that, for both regular and

loop orbits, which manifest a discreter/3 rotation symme- chaotic orbit segments, strong correlations exist between the

try, whereas the lower line is occupied completely by boxValue of the short time(t) and such properties of the cur-
and banana orbits that break this symmetry. There are only ¥ature agK) andoy. Because the quantiti¢&) ando are
very few chaotic orbits at this energy, and all of them fit atthemselves correlated, it would seem equally reasonable to
the highoi end of the upper line. As the energy increases]ook for correlations betweeg(t) and eithefK) or o (or

the lower line eventually shrinks and merges into the uppeany combination of these two quantities=or specificity,
line, so that, ultimately, different families of regular orbits most of the discussion will focus on correlations betwegn
coexist with chaotic orbits along a Single thickened curve. and X(t), a|though several ﬁgures exhibit examp|es of cor-

_ relations betweerdK) and x(t). Figures 3 and 4 exhibit
B. Correlations between curvature and(t) plots of y as a function ofrg, generated respectively for the
Ordinary Lyapunov exponentg, which [18] probe the dihedral and truncated Toda potentials for the same en-
average instability of some trajectory in an asymptotieo sembles used to generate Figs. 1 and 2.
limit, manifest a fundamental distinction between regular Consider first the case of orbit ensembles evolved in the
and chaotic orbits. For regular orbits all the Lyapunov expo-dihedral potential. FOE= —0.05, where there are few if any
nents vanish identically, whereas chaotic orbits have at |ea$égu|ar orbits, a plot of¢ as a function ofog shows little
oney that is positive. Orbits in &-dimensional system have opvious structure: all that one sees is a seemingly random
2D distinct Lyapunov exponents, these corresponding to perscattering of points at values gfwell separated frony=0.
turbations in ® independent phase space directions. For a{owever, a€ increases, one begins to observe the existence
time-independent Hamiltonian system, two of these expoof regular regions, which correspond to rangesgfwhere,
nents must Vanis[reflecting neutral Stabl'lty with respect to for some segmentg; assumes values much smaller than the
perturbations that translate an orbit froff(t) to x*(t+dt)  values associated with chaotic segments. Thus, e.g., as illus-
and to perturbations orthogonal to the constant energy sufrated in Fig. 8b), for E=0.05 one observes an extended low
face| and the remaining exponents must come in pairg, 4 band that corresponds to one regular line in Figp) la
It follows that, for two-dimensional Hamiltonian systems, collection of points neatz=6.0 corresponding to the sec-
the only fundamental distinction is between regular orbitsong |ine, another collection nearg=7.4 corresponding to
for which all the’s vanish, and chaotic orbits, which have the third line, and a small number of smallpoints near
one exponenk>0. _ _ ok = 7.8 corresponding to the highg points in Fig. 1b).
However, one can also introduce short time Lyapunov For 0.2 or so, a simpler pattern emerges that includes
exponentsy(t), which provide information about the aver- only two types of regular orbits; they are concentrated at
age instability of orbit segments over a finite interval. ThUS:especiaIIy low and high values of; (or, equivalently, high
in particular, for any phase space perturbatifify one can 5.4 o\ values ofK)). At somewhat higher energies, the
define[9] high o family disappears, only to be replaced by a new

1 [|sz) regular family concentrated at intermediate values®f At
x(H=lim Im - In[ﬁ}, (170 yet higher energies, one sees two large regular regions, con-
t— 62(0)—0 ¢ 16z(0)] centrated at the largest and smallest valuesigfalong with

some intermediate regions with smglk that are associated
where||-|| represents a suitable norm. For a generic initialwith nearly vertical lines in therg-y plane. Viewed in a
perturbation, thisy(t) will converge towards the largest surface of section, the lowy regular region corresponds to
Lyapunov exponent in the limit—«, independent of the a large island of loop orbits; the highk region corresponds
detailed choice of norm. By contrast, at finite times the com+o a large island of box orbits. The regular orbits associated
puted x(t) will depend on both the initial perturbation and with the vertical lines correspond to smaller islands embed-
the choice of norm. Suppose, however, thiis taken as the ded in the stochastic sea. This structure appears to persist to
natural L?> phase space norm, i.€|sZ|?=(6x)%+(dy)?  very high energies.
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FIG. 4. The short time Lyapunov exponepplotted as a func-
0.48 ‘ ‘ 0.48 tion of o for the same orbit ensembles as in Fig. 2.
(e) i ) N
£ 3 tematically to have largey’s than do chaotic segments with
< 0.24 o <004 P values of o closer to the outer regular regions. The net
i ,* result is a curve that, viewed broadly, resembles a Greek
i . The overall shape of thek- x curve in the regular region
. ﬁ; depends on the choice of the initial seg&d used in comput-
0.00 Lawsre v cogrwgpst | 0.00 Laemmuerrn:. . N . . . .
6 13 20 o7 7 99 37 59 ing the short timey(t). If, as in Figs. %a) and gb), one
o¢ oy computesy from a seedsZ= Jx, it is apparent that the seg-
048 0.48 ments with values ofi (or (K)) closest to the central cha-
otic region, 112 0 <142 or so, tend overall to have larger
values ofy than do orbits with values afy further from this
~ 004l 004 chaotic region. However, i is generated instead from a
' : seed with a significant component in one of the other three
phase space directions, this trend is significantly diminished.
This is illustrated in Figs. &) and 3d), which exhibit y's
OOOO 0.00 generated for the same initial conditions from a se&d

FIG. 3. The short time Lyapunov exponepplotted as a func-

tion of o for the same orbit ensembles as in Fig. 1.

For these relatively high energigs>6.0 or so, a plot of
x as a function ofog or (K) exhibits several striking regu-

larities. One significant point, well illustrated f&= 10.0 in

Fig. 5, is that the transition from regularity to chaos observe

at low and high values afx (or high and low values de))
is relatively abrupt. Thus, e.g., the smailt, large(K) loop
orbits can be viewed as a sequence beginninggat 22 that

= gy. This difference presumably reflects the fact that, since
the initial conditions were sampled from an=0 surface of
section, a perturbatiodZ= 6x tends to be more nearly
aligned along a direction of neutral stability, namely, trans-
lation from x(t) to x(t+ ét), than do perturbations with a
nonzerosy.

At lower energies, where the higkg region is absent or
not well developed, the right side of theis missing. How-
gver, one still observes that chaotic segments witftloser
to the regular region tend to have smaller valueg tifan do
chaotic segments far from the regular regions; and, at least
for a seedéZ~ dx, that regular orbits closer to the chaotic
region tend to have larger values pf

terminates at a value ofg~112, whereas the largek,  “gne ohvious complication associated with the common
small (K) b0X95~Can be viewed as a sequence extendingattern, well illustrated in Fig. 5, is the presence of one or
upwards fromo(K)~124 and terminating at a valuK)  more nearly vertical lines in the chaotic region, extending
~135. The chaotic segments situated near the boundary witlhom very low to relatively high values of. The lowest
the outer regular regions tend typically to be “confined” or values of y seem too small to be associated with chaotic
“sticky” chaotic orbits [19] trapped near the regular regions segments, but the upper values seem too large to be associ-
by cantori [10] that, oftentimes, only escape to travel ated with regular orbits. In fact, these lines contain two dif-
throughout the remainder of the stochastic sea on a timéerent classes of orbits, namely, regular orbits, for which
scalet>256. It is also apparent from Fig. 5 th@ven away x(t) eventually decays to zero, and confined chaotic orbits,
from the boundarigschaotic segments with values ofg trapped temporarily near a small regular island, which even-
furthest from the high and low regular regions tend sys- tually escape through one or more cantori to travel unim-
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FIG. 5. (a) Short time Lyapunov exponentgt), generated with
an initial perturbatiorsx=10"1° and plotted as functions afg for
an ensemble of orbit segments wifl= 10.0 evolved in the dihedral

FIG. 6. The evolution of regular and confined chaotic orbits for
E=10.0 in the dihedral potential, witly plotted as a function of
og. The dots represent analogs of Fig. 3, with a total integration
potential for a total timé=256. Only values 0f<0.16 are shown. time t=256. The diamonds represent the same initial conditions
(b) The samey(t)'s plotted as a function ofK). (c) The analog of  analyzed over different time intervalé) 0<t<256. (b) 256<t
(@), generated for the same ensemble, but now allowing for an ini<512. (c) 512<t<768.(d) 768<t<1024.
tial perturbationsy=10"1°. (d) The analog ofb), generated for an

. e . _ 710
initial perturbationdy =10 line nearoz=139. The diamonds in Fig.(6) show the val-

. . . ! . ues ofy and o derived from the same 81 initial conditions
peded through the stochastic sea. Viewed in configuratiog, 4 o period 256 t<512. Figures &) and d) extend the

space, the regular orbits corresponding to these lines COMeasults to later intervals 5k2t< 768 and 768 t< 1024. It is

spond to periodic qrbits confined to an annu!us ora “ﬁgure'clear that, as time elapses, the largeliamonds escape from
eight-shaped” region. The confined chaotic orbits corre-, g X

L . ; “the line and move to other portions of the chaotic regions,
spond to aperiodic orbits that, for a long time, are trapped iNyhereas the smalley diamonds evolve closer tp=0
almost the same requfwvhence follows the fact that they ‘

- The other complication common to the pattern is the
have nearly the samg) and o as do the regular orbits  existence of smaller scale structures in the regular regions.

but eventually escape to probe the remaining chaotic phasgs noted already, for short time exponents generated from a
Space regions. o o _seeddZ directed nearly in thes direction, many or most
Evidence for these assertions is provided in Fig. 6, whichegylar segments fit along a curve wighdecreasing as one
summarizes an investigation of the longer time evolution ofy,yes away from the central chaotic region to much larger
the initial conditions that led to the near vertical line in Fig. o, smaller values ofox. Alternatively, for more generic
5(b) at og~139. A random sampling of 1261 initial condi- chpices ofsz, a plot of y as a function ofey exhibits an
tions with E:1C_).O evolviad for a total tim&\t=256 led to upper envelope that is more nearly independentf How-
81 segments with 1380 <140 andy(At)<0.1. These 81 gyer, in each case this upper curve is not the whole story.
initial conditions were subsequently integrated for a signifi-  ag jjjustrated in Figs. &) and 5d), for generic values of
cantly longer timef==8x 256, with x(t) recorded at regular 57 the Jow o loop orbits exhibit two additional features,
intervals, and the resulting orbits partitioned into 8 Segmentﬁamely (1) small scale oscillations in thei-y or (E>'X

of length At=256, for which valuesrg and(K) were com-  pjane "and?2) an excess probability of finding segments with
puted. The recorded values gft) were then analyzed 10 egpecially low values of closer tq rather than further from,
extract short time Lyapunov exponents for successive intefihe central chaotic region. Alternatively, as illustrated in
yals of lengthAt= 256, the exppnent fqrthe s_egment e>_<tend-|:igs_ Ha) and §b), for 5z oriented more nearly in the
ing from t,=kAt to t,+At being defined via the obvious gjrection one can identify various “subfamilies” of regular
relation (cf. [12]) orbits which, for a fixed value ob, tend to have much
smaller values of than other regular orbits witfnearly) the
same value obgk. Thus, e.g., if one focuses on a fixed in-
terval of values ofogx and compares regular orbits with
larger values ofy that fall along the upper line with regular
The tiny dots in all four panels of Fig. 6 exhibit the values orbits with smaller values of, he or she finds typically that
of x and o generated for the original ensemble of 1261there is a relatively clear cut difference between the two sets
orbits evolved for a time=256. The diamonds in Fig.(&  of orbits, as probed by the detailed shapes of their power
highlight the 81 segments concentrated initially along thespectra or, in some cases, by the overall shape of the orbit. In

(et A x(te+ At —tx(ty)
B At '

x(Aty) (18)
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the following way. Given the values of the configuration
space coordinates, sayandy, at fixed time intervalsit,
sampled, e.g.;-5—10 times per crossing time, compute the
power spectrdx(w)| and|y(w)| in the usual way20]. Next
determine the minimum number of frequencieg(k) and
ny(k), required respectively to capture a fixed fractioof
thex andy powers. The total complexity is then defined as

2 0 2 n(k)=ny(K)+ny(K). (19

X

FIG. 7. Two orbits withE=10.0 evolved in the dihedral poten- This notion of complexity is motivated by the idea that
tial for a timet=256. () An orbit with (K)=183.4,0x=56.4,Q  “comparatively regular” segments have most of their power
=ogl/(K)=0.308, andy=0.0051.(b) An orbit with (K)=181.6,  concentrated at or near a few special frequencies, whereas
ox=62.7,Q=0.345, andy=0.0116. “wildly chaotic” segments have spectra with significantly

) broader band power. Experience with ensembles of orbits
many cases, the regular orbits that have smaller valugs of e\olved in several different potentials has indicated that val-
tend to be “simpler” or “more regular” in appearance. This ,e5k~0.9-0.95 yield relative complexities in good agree-
is illustrated in Fig. 7, which exhibits two representative ment with subjective impressions based on visual inspection
regular orbits extracted from the interval 54.6x<58.0. ot segments in the-y plane. The results described in this
Figure 7a) shows a typical lowy orbit, whereas Fig. @) paper were derived from integrations where coordinates were
shows a typical orbit lying along the upper curve. Itis obvi- recorded at fixed intervaldt=0.125 for a total timet

ous that the higheg orbit is (nearly space filling within an  _ 556 |eading to 2048 points and hence a Fourier series with
annulus, whereas the lower orbit exhibits more structure. 5q4g frequencies.

__The detailed patterns relating to o are different for As stated already, for orbit segments in both the dihedral
initial conditions evolved in the truncated Toda potential, butynq truncated Toda potentials, as well as for other systems
the data still admit to a similar interpretation. At relative low [12], there is a strong, nearly Iir’1ear correlation betwgér)
energiesE~2-8, one sees _pattern_s qualitatively_ similar to g quantities such as(0.9) or n(0.95). For ensembles
tho;e observed fd£>6 or soin the d|h(_—:-dral potential. Alter- wherey andn(k) both assume a broad range of values, the
natively, for somewhat higher energiéS>25 or so, one 50k correlation typically assumes a valuR(y,n(k))
sees instead a pattern reminiscent of those observed at rela(y g5_g g |t alternatively, most of the segments are con-
tively low energies in the dihedral potential where, in the .ot ated in tr’le same part, of then(k) plane, R can be
absence of a significant population of largg box orbits,  cmaller but still remains appreciable. '

one observes simply that, for chaotic segments, larger This correlation can be understood intuitively in terms of
correlates with largery. Superficially, the behavior foE ¢ fact that chaotic orbit segments often appear visually to

=20.0, illustrated in Fig. &), might seem quite different e comprised of “pieces” of various regular orbits that exist
from what is observed in the dihedral potential since here thg; ihe same enerdyL6]. Consider, e.g., orbits witE=10.0

chaotic segments with the smallest valuesyoire those i, the dihedral potential. Here one finds that chaotic seg-
furthest from the regular regions. However, when placed inyents with values ofrz near those appropriate for the two
an appropriate context this behavior is not surprising. At €nyarge regular regions tend overall to look more regular, and
ergies slightly aboveE=20.0, this low x chaotic region 4 naye smaller complexities, than segments located at values
merges into a relatively large regular island, which is well ;¢ o further from the regular regions. Moreover, chaotic
established bye=25.0. ForE=30.0, one sees three large segments near the lowy regular region tend to look

islands at lowo, the two corresponding to the lowest val- “loopy” and to have power spectra dominated by features
ues of o very similar qualitatively to the islands fdg appropriate for the loop orbits that exist at smail; and
= 10.Q in the dihedral potential associated with the two Vesimilarly, chaotic segments near the highi regular region
tical lines. tend to look “boxy” and to have spectra similar to the high
ox box orbits.
C. Curvature and complexity The degree to which a quantity likg0.9) correlates with

The preceding shows that there is a strong correlatiory, both in itself and in relation to other quantities lik€) or
between the overall stability or instability of an orbit seg- ok, can be gauged from Fig. 8, which exhibits data gener-
ment, as probed by the Va|ue9f a short time Lyapunov exated in the dihedral potential fd&f=10.0 andE=1.0. Ihe
ponenty(t), and the values ofK) and oz associated with two left panels exhibit plots ofy as functions of(K),
that segment. However, earlier wdri?] has shown that, for whereas the two right panels plot0.9) as a functiogK). It
chaotic segments, there also exists a strong, nearly lineais clear that, at least in the chaotic regions, the plotg ahd
correlation betweeny(t) and thecomplexityof the segment, n(0.9) exhibit the same basic features, although the plots of
as probed by the form of its Fourier spectrum. One thus(0.9) seem more “blurred.”
anticipates that there should exist correlations betw@en There is, however, a significant difference for the regular
or o and the complexity of the segment. orbits. Plots 0fn(0.9) [or n(0.95)] as a function otk or

As discussed more carefully in R¢fL2], n(k), the com- (K) exhibit large systematic oscillations not manifested in
plexity of an orbit segment at threshdid can be defined in  the plots ofy, whereas the small scale structures present in
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_FIG. 8. (a) The short time exponeng plotted as a function of
(K) for a collection of orbits witlE=10.0 evolved in the dihedral
potential for a total timé=256.(b) The complexityn(0.9) plotted
as a function of K) for the same set of segments) The analog of
(a) for a collection of segments with=1.0. (d) The analog ofb)
for the segments ofc).

FIG. 9. Anx-p, surface of section foE=10.0 in the dihedral
potential. The dots derive from a single unconfined chaotic orbit
evolved for 2000 intersections. The remaining points represent
some of the initial conditions used to generate Figs. 5 and 6. Dia-
monds represent loop orbits withiz<<72.0. Triangles represent
loop orbits with 72.6< 0% <90.0. Squares represent loop orbits with
the plots of y (cf. Fig. 5 are absent in plots ofn(0.9). 90.0< 0} <110.0. Stars represent box orbits witlg>141.0.

. _ Pluses represent points along the near-vertical line with 120.0
Consider, e.9.E=10.0. Here all the segments at large) <0og<122 andy<0.08. Crosses represent points along the line
are regular loops, but the loops ned¢)=175 are clearly i 138.0< or< 140.0 andy<0.1.

special in thatn(0.9) assumes values that are particularly

small. This reflects the fact that, in this region, peaks in thgpe phase space regions near the two large regular islands.
spectralx(w)| and|y(w)| are much sharper than at some- The remaining symbols represent different initial conditions
what larger and smaller values ¢K). corresponding to regular and “confined” chaotic orbits gen-
This is a finite sampling effect, reflecting the fact that theerated from a uniform sampling of thE_py plane. The
orbit's segments were integrated for a relatively short timesmaller of the two large islands, located ngar p,=0 and
t=256. If the total timet is changed, but data are still re- populated with stars, corresponds to box orbits. The larger,
corded and analyzed at 2048 equally spaced intervals, onfisplaced fromy=0, corresponds instead to loop orbits.
finds that, as would be expected, the valuegkf and o Here the initial conditions were binned into three classes.
computed for regular segments remain essentially unThe diamonds represent segments withassuming particu-
changed. By contrast, however, the details of the oscillationtarly small values, whereas the squares represent values of
can be altered significantly. Thus, e.g., 1.0 the loca- o especially close to the chaotic region. The triangles cor-
tion of the dip neakK)=17.5 will move and other minima respond to intermediate values. The remaining pluses and
can appear. Moreover, one observes that, iasreases, the crosses represent initial conditions that led to the two nearly
computed complexities decrease and the amplitudes of theertical lines exhibited in Fig. 5.
oscillations damp.

One final correlation remains to be stated. To say that a IIl. SUMMARY AND INTERPRETATION
regular orbit is close to the chaotic region is a statement _
aboutbothits location(say) in the - y planeandits actual Several general trends emerge from the experiments de-

location in configuration space, as probed, e.g., by a surfacgcribed in the preceding section. Most striking and funda-
of section. For example, orbits in the large regular regiongnental, perhaps, is the fact that, for an ensemble of orbit
with values of(K) and o further from the central chaotic S€gments of fixed enerdy, a plot of the dispersion as a
region tend systematically to lie closer to the center of dunction of the mean(K) usually assumes a very simple
regular island than do regular segments with valueskof form. In general, regular and chaotic segments appear to co-
and o closer to the central chaotic region. Similarly, the exist along a single curve in th&)- ok plane, although for
vertical lines associated with regular and confined chaoti®oth potentials one sees more complicated structures at very
orbits are associated with smaller regular islands embeddd@w energies. The fact that chaotic segments fit along a
in the stochastic sea. single curve indicates that, even though they are aperiodic,
These facts are illustrated in Fig. 9. Here the small dotghey still exhibit significant statistical regularities.
represent successive sections generated from a single “un- Plots of the short time Lyapunov exponex(t) as a func-
confined” chaotic initial condition that systematically avoids tion of (K) or o also exhibit simple, distinctive patterns.
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For example, one find that, largely independent of the initial For values ofw and+y far from the chaotic portions of the
perturbationsZ used in calculating, chaotic segments with curve, one finds typically that, for reasonably largethe
values of(K) (or o) far from the regions associated with computed value of is relatively insensitive to the detailed
regular orbits tend to have larger values xft) than do perturbation and to the exact valuesm?ﬁndy._ However, for
chaotic segments with values @) (or o) nearer the regu- Values ofw and y closer to the chaotic regions, more com-
lar regions. For regular orbits, the computed valueg(@), ~ Plicated patterns can arise. Viewed in an asymptbticx
and hence any correlations Wi(&) or o%, depend more limit, the transition f_rom regula_lr to chaotic is abrupt. How-
sensitively on the initial perturbation. For most initial pertur- ever, the transmqn IS smooth in thg sense that, when evalu-
bations, it seems that, overall, the typigglt) is nearly in- f”,‘tEd fqr fome finite time, the short timey(t) compute_d for.
dependent OKR> and 0. However, for some classes of ch_aotlc values of w and vy close to the regular regions is
perturbations one finds instead that segments with values gypically smaller than the(t) computed for values that are

" -\ further f he chaoi ) dtoh urther from the regular region. This is consistent with the
(K) (or o) further from the chaotic regions tend to have fact, manifested in Figs. 3—5 that orbits with values(kf)
smaller values ofy than do regular segments with values

closer to the chaotic region. and oy further from the regular regions tend to have larger

: ~ short time Lyapunov exponents. Given this observation, it is
The correlations betweep(t) and(K) (or o) observed

x : - also easy to understaricf. Fig. 6) why, for “sticky” chaotic
for chaotic orbits are very similar to the observed Correla'segments confined near regular regions by cantori, the com-

tions between the complexity(k) and(K) (or k). This  puted y(t) tends to be smaller than for other chaotic seg-
reflects the fact that chaotic segments with value&gfand  ments that travel further from the regular regions.
ok closer to the regular regions tend to look more regular A detailed discussion of the sense in which the onset of
and, consequently, to have less complex Fourier spectra thamaos can be understood in terms of a more general Hill
do orbits with values further from the regular region. equation has been presented by Cerruti-Sola and PERjini
One other common feature, observed for both complexiin the context of their analysis of individual orbits.
ties and short time exponents, is the presence of one or more The work described in this paper has established the ex-
nearly vertical lines in(say the ok-x or ok-n(k) plane. istence of a strong correlation between such geometric prop-
These are comprised of two distinct types of segmentserties of chaotic orbit segments &) ando and the short
namely, segments of regular orbits trapped forever in an istime Lyapunov exponent. However, one might expect that
land of stability by invariant KAM tori and “confined” cha-  thijs |ocal, short time analyses could also be extended to es-
otic orbits, trapped temporarily by cantori in a similar con- (;pjish a global connection between momentsl?ofas de-

figuration space region which, however, eventually diffuseqneq along an infinite chaotic geodesic, and the ordinary
through the cantori to probe the remaining portions of thel_yapunov exponeny.., as defined in d—o limit. Casetti

chaotic sea. L __etal.[22] have shown that, at least for systems with a large
Many_ of these qualitative features_ can _be reproduced in AumberN of degrees of freedom, such a connection does
much simpler context, where the linearized scalar Jacol,jeeq exist. Specifically, by assuming that the curvature ex-
equation(1l) is replaced by a linear Matthieu equation of the perienced by a chaotic orbit can be approximated as a ran-
form [21] dom process, characterized by a méin and a dispersion
ok, they obtained an analytic approximation to the largest
d2¢, ) Lyapunov exponent which, in at least some cases, agrees
a2 -~ (ot 7y sint)éy, (20 extremely well with numerical computations.
It would seem unlikely that such a simple Gaussian ap-
—~ proximation, which these authors motivate in the lakge-
wherew and y play the roles, respectively, §K) andok.  |imit, will work well for the very special cas&l=2. How-
If one studies solutions to E¢RO) as a function ofv and  ever, one might nevertheless hope that, in some fashion, the
v (or, by analogy{K) ando}) he or she finds that the-y  value of the positive Lyapunov exponent for a two-
pane is partitioned into a large number of disjoint regions dimensional system can again be related to the moments of
corresponding respectively to “regular” and “chaotic” or- K or K evaluated along the chaotic orbit. This possibility is
bits. In the regular regions, it is apparent that, in thew currently under investigation.
limit, the analog of the ordinary short time Lyapunov expo-

nent,
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